Abstract

Poly(3,4-ethylenedioxythiophene) (PEDOT) is certainly the most known and most used conductive polymer because it is commercially available and shows great potential for organic electronic, photovoltaic, and thermoelectric applications. Studies dedicated to PEDOT films have led to high conductivity enhancements. However, an exhaustive understanding of the mechanisms governing such enhancement is still lacking, hindered by the semicrystalline nature of the material itself. In this article, we report the development of highly conductive PEDOT films by controlling the crystallization of the PEDOT chains and by a subsequent dopant engineering approach using iron(III) trifluoromethanesulfonate as oxidant, N-methyl pyrrolidone as polymerization rate controller and sulfuric acid as dopant. XRD, HRTEM, Synchrotron GIWAXS analyses and conductivity measurements down to 3 K allowed us to unravel the organization, doping, and transport mechanism of these highly conductive PEDOT materials. N-methyl pyrrolidone promotes...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.