Abstract
Copper chloride anion clusters with both copper oxidation states can be made by laser desorption of CuCl(2) crystals. We have used this method to study the dissociation characteristics of such cluster ions. The stability and the structure of the observed complexes were probed by ab initio calculations. These calculations show that many of these complexes are bridged structures. Thus, for the Cu(2)Cl(4) dimer anion, formally [ClCu-Cl-CuCl(2)](-) , with putative mixed copper oxidation states, the two copper ions become equivalent through bridging. Such bridging does not occur when redox inactive metal ions are present as in [ClCu-Cl-CaCl(2)](-) . By observing the dissociation characteristics of a variety of metal chloride cluster anions produced from binary mixtures, the following Cl(-) affinity order is obtained: FeCl(3) > CuCl > CaCl(2) > FeCl(2) > AgCl ≈ CuCl(2) ≈ ZnCl(2) > LiCl. Ab initio calculations on the Cl(-) affinity of selected chlorides confirm this order as do Cl(-) affinity estimates from the experimentally known vertical electron detachment energies of the superhalogens CaCl(3)(-) and LiCl(2)(-) . An equimolar mixture of CuCl(2) and FeCl(3) produces an intense cluster ion, which, from (65)Cu labeling experiments, is best described as FeCl(4)(-)···Cu(+)···(-)Cl(4) Fe, a Cu(+) bound superhalogen FeCl(4)(-) dimer. The Cu(+) ion can be replaced by the redox inactive alkali cations and by Ag(+) but these metal ion bound FeCl(4)(-) dimers show an entirely different fragmentation behavior which is attributed to the absence of bridging. Electrospray ionization (ESI) of CuCl(2) produces an extended series of (CuCl(2))(n) Cl(-) anions (n = 1-11) and so in ESI very limited reduction of Cu(2+) takes place. The (CuCl(2))(n) Cl(-) anions show an abundant dissociation via loss of neutral Cu(2)Cl(4) which according to our ab initio calculations is 9 kcal/mol more stable than two CuCl(2).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.