Abstract

ABSTRACT The peripheral surface of a fertilized, uncleaved egg is subdivided through cleavage and is allotted to constituent cells. This is called the primary surface. In an early morula a constituent cell has two kinds of surfaces: the primary surface, and the secondary surface, which does not participate in forming the periphery of the embryo. Electron-microscopic observations showed structural differences between the two surfaces. When the dorsal marginal zone of an early gastrula of Hynobius nebulosus is excised and immersed in Feldman’s solution, the piece can easily be separated into two layers: the outer layer, whose constituent cells are given a share of the primary surface, and the inner layer, whose constituent cells are completely covered only by the secondary surface. Both an explanted piece of the outer layer and an intact double-layered piece show three kinds of movement: spreading, convergence followed by stretching, and spherical thickening. The inner layer is kinetically very inert, showing slight spreading and thickening. An explanted piece of the outer layer differentiates into axial mesodermal structures, while the inner layer does not. When a piece of either the inner or the outer layer is implanted in the blastocoel of another gastrula, it induces deuterencephalic and spino-caudal structures and seems to differentiate into axial mesodermal structures. Differences of kinetic properties and differentiation are considered to result from the fact that the outer layer has the primary surface, while the inner layer does not. Functional effects of the primary surface on the movement of tissues and differentiation are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.