Abstract

Spermidine/spermine-N1-acetyltransferase (SSAT) is a key enzyme in the degradation of polyamines. Alanine-scanning mutagenesis of all eight arginine residues was used to investigate the arginine residues involved in acetyl-CoA binding. The results indicate that Arg101, Arg142 and Arg143 are important for such binding. The apparent Km values for acetyl-CoA were significantly increased when any one of these residues was replaced by an alanine residue. These mutations also abolished the ability of acetyl-CoA to protect the protein from digestion by trypsin. Co-expression of the inactive R101A (Arg101 --> Ala) mutant and an E152K (Glu152 --> Lys) mutant, previously known to inactivate SSAT, led to restoration of activity, showing that the active enzyme is a dimer with residues contributed by both subunits. The double mutant R101A/E152K acted as a dominant negative when co-expressed with the wild-type SSAT. Transfection of COS-7 cells with a plasmid producing this mutant greatly attenuated the increase in SSAT activity brought about by N1, N12-bis(ethyl)spermine. These results indicate that the double mutant R101A/E152K-SSAT protein can be used to evaluate the importance of SSAT activity in response to exogenous polyamines or polyamine analogues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call