Abstract

Using quick-freeze/deep-etch electron microscopy of recombinant proteins adsorbed to mica, we show that NSF, the oligomeric ATPase involved in membrane fusion, is a hollow 10 × 16 nm cylinder whose conformation depends upon nucleotide binding. Depleted of nucleotide, NSF converts to a “splayed” protease-sensitive conformation that reveals its subunit composition. NSF's synaptic membrane substrate, the ternary SNARE complex containing syntaxin, SNAP-25, and synaptobrevin, is a 4 × 14 nm rod with a “tail” at one end, corresponding to the N-terminus of syntaxin. Using epitope tags, antibodies, and maltose-binding protein markers, we find that syntaxin and synaptobrevin are aligned in parallel in the complex, with their membrane anchors located at the same end of the rod. This SNARE rod binds with α-SNAP to one end of the NSF cylinder to form an asymmetric “20S” complex. Together, these images suggest how NSF could dissociate the SNARE complex and how association and dissociation of the complex could be related to membrane fusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call