Abstract

Since the early days of relational databases, it was realized that acyclic hypergraphs give rise to database schemas with desirable structural and algorithmic properties. In a by-now classical paper, Beeri, Fagin, Maier, and Yannakakis established several different equivalent characterizations of acyclicity; in particular, they showed that the sets of attributes of a schema form an acyclic hypergraph if and only if the local-to-global consistency property for relations over that schema holds, which means that every collection of pairwise consistent relations over the schema is globally consistent. Even though real-life databases consist of bags (multisets), there has not been a study of the interplay between local consistency and global consistency for bags. We embark on such a study here and we first show that the sets of attributes of a schema form an acyclic hypergraph if and only if the local-to-global consistency property for bags over that schema holds. After this, we explore algorithmic aspects of global consistency for bags by analyzing the computational complexity of the global consistency problem for bags: given a collection of bags, are these bags globally consistent? We show that this problem is in NP, even when the schema is part of the input. We then establish the following dichotomy theorem for fixed schemas: if the schema is acyclic, then the global consistency problem for bags is solvable in polynomial time, while if the schema is cyclic, then the global consistency problem for bags is NP-complete. The latter result contrasts sharply with the state of affairs for relations, where, for each fixed schema, the global consistency problem for relations is solvable in polynomial time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.