Abstract
The xylem in three arborescent species of Blechnum section Lomariocycas was studied in detail using SEM, TEM, FT-IR spectroscopy and sugar composition analysis. The overall structure of root and rhizome metaxylem tracheids was similar in the three species analyzed, and characterized by mostly scalariform pitting of these multifaceted cells. Pit membrane thickness and porosity varied according to the stage of tracheid maturation. Approximately rounded deposits resembling vestures were observed in the outer pit apertures of some tracheids. Under TEM, thickenings like one-sided tori appeared on the tracheid side of tracheid-to-parenchyma contact walls; some parenchyma cells showed, in addition, features of transfer cells. As the increase in stature creates new constraints in terms of biomechanical support and water transport in plants, the characteristics found in Blechnum xylem might be related to optimization of conductive efficiency and safety. Chemical analyses of roots and rhizomes of B. yungense revealed similar levels of G-type lignin deposited in the xylem cell walls. Such lignin is the most common in ferns, including other arborescent genera. Preliminary analysis of cell wall polysaccharide composition of both root and rhizome xylem, yielded cellulose, xyloglucans and xylans with low amounts of mannans and pectins. The xylem of rhizomes had higher amounts of cellulose than root xylem. Our results are discussed in the context of functional and evolutionary aspects of xylem ferns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.