Abstract
The heteronuclear oxo-cluster [VPO4](•+) is generated via electrospray ionization and investigated with respect to both its electronic structure as well as its gas-phase reactivity toward small hydrocarbons, thus permitting a comparison to the well-known vanadium-oxide cation [V2O4](•+). As described in previous studies, the latter oxide exhibits no or just minor reactivity toward small hydrocarbons, such as CH4, C2H6, C3H8, n-C4H10, and C2H4, while substitution of one vanadium by a phosphorus atom yields the reactive [VPO4](•+) ion; the latter brings about oxidative dehydrogenation (ODH) of saturated hydrocarbons, e.g., propane and butane as well as oxygen-atom transfer (OAT) to unsaturated hydrocarbons, e.g. ethene, at thermal conditions. Further, the gas-phase structure of [VPO4](•+) is determined by IR photodissociation spectroscopy and compared to that of [V2O4](•+). DFT calculations help to elucidate the reaction mechanism. The results underline the crucial role of phosphorus in terms of C-H bond activation of hydrocarbons by mixed VPO clusters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.