Abstract

In the present work we report on the detailed structural features of the chiral N21- and N22-substituted benzyl and picolyl derivatives of tris(pentafluorophenyl)corrole [H3(tpfc)]. The main difference between the isomers is that substitution on N22 creates a much more crowded environment, reflected in higher deformation of the corrole ring from planarity and of the meso-aryls from perpendicular orientation. The effects of metal-ion chelation on corrole geometry are demonstrated by structural investigations of the zinc(II) and rhodium(I) complexes of the N21- and N22-alkylated corroles. The major finding is the intramolecular coordination of the pyridine moiety of the picolyl substituent in the case of [ZnII(N21-picolyl-tpfc)]. This pyridine is readily attracted to the zinc ion as an axial ligand, thus replacing the external pyridine molecule of the precursor [ZnII(N21-benzyl-tpfc)(py)]. The change is associated with a considerable flattening of the corrole ring in order to allow a more convenient coordination of the zinc ion to all four pyrrole nitrogen atoms (at Zn-N(pyr-role) distances of 1.956-1.987 A for the nonsubstituted sites, and 2.224-2.247 A for the substituted sites). These structural investigations also aid a good understanding of the spectroscopic characteristics of the derivatives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.