Abstract

Ni-rich layered oxides LiNixCoyMn1-x-yO2 (NCMs, x > 0.8) are the most promising cathode candidates for Li-ion batteries because of their superior specific capacity and cost affordability. Unfortunately, NCMs suffer from a series of formidable challenges such as structural instability and incompatibility with commonly used electrolytes, which seriously hamper their practical applications on a large scale. Herein, the Al/Ta codoping modification strategy is proposed to improve the performance of the LiNi0.83Co0.1Mn0.07O2 cathode, and the as-prepared Al/Ta-modified LiNi0.83Co0.1Mn0.07O2 delivers exceptional cycling stability with a capacity retention of 97.4% after 150 cycles at 1C and an excellent rate performance with a high capacity of 143.2 mAh g-1 even at 3C. Based on the experimental study, it is found that the structural stability of NCM is strengthened due to the regulated coordination of oxygen by introducing a robust Ta-O covalent bond, which prevents the layered structure from collapsing. Moreover, the reconstructed rock-salt-like surface is capable of effectively inhibiting interfacial side reactions as well as the overgrowth of the cathode-electrolyte interface. Theoretically, the energy of Li/Ni mixing is significantly increased with the introduction of Al and Ta elements in Al/Ta codoped NCM, leading to inhibited adverse phase transition during cycling. A feasible pathway for designing and developing advanced Ni-rich cathode materials for Li-ion batteries is provided in this work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call