Abstract

Abstract The 79-81Br NQR spectra of tribromocadmates with the cations K⊕, NH4 ⊕, Rb⊕, Cs⊕, CH3NH3 ⊕, (CH3)2NH2 ⊕, (CH3)4N⊕, H2NNH3 ⊕, and C(NH2)3 ⊕ were studied as functions of temperature from 77 K on up to T>300 K. CsCdBr3 shows a singlet 81Br NQR spectrum over the whole temperature range studied. [CH3NH3]CdBr3, with one 81Br NQR line spectrum at room temperature, experiences a phase transition at 167 K; below this temperature an 18-line spectrum is observed. In [(CH3)4N]CdBr3 (phase II), at 290 K, a singlet 81Br NQR is present as is in the high temperature phase III (TII.1 , = 390 K); the low temperature phase III (TII,m, = 160 K has a triplet 81Br NQR spectrum. KCdBr3 shows an 81Br NQR doublet spectrum, as do RbCdBr3, [H2NNH3]CdBr3, and [C(NH2)3]CdBr3. 81Br NQR triplets are observed for [(CH3)2NH2]CdBr3 and NH4CdBr3. Several crystal structures were determined (at room temperature). [(CH3)4N]CdBr3: P63/m, Z = 2, a - 940 pm, c = 700 pm, disordered cation, single chain Perovskite with face connected [CdBr6]- octahedra (nearly CsNiCl3-type). [(CH3)2NH2]CdBr3: P21/c, Z = 4, a = 898 pm, 6 = 1377 pm, c = 698 pm, ß = 91.2°, face connected [CdBr3-octahedra single chain Perovskite. NH4CdBr3: Pnma, Z = 4, a = 950 pm, b = 417 pm, c= 1557 pm, with a double chain of condensed [CdBr6]-octahedra, NH4CdCl3-type. [N2H5]CdBr3: P2,/c, Z = 4, a = 395 pm, 6 = 1749 pm,c = 997 pm,ß = 94.2°, double chain polyanion similar to NH4CdBr3. [C(NH2)3]CdBr3: C2/c, Z = 4, a = 778 pm, 6 = 1598 pm, c = 746 pm, ß = 110.2°, a single chain Perovskite with a chain of condensed trigonal bipyramids [CdBr5]. Three types of anion chains of CdBr3 have been observed: Single octahedral chains, face connected; double octahedral chains, edge connected; a trigonal-bipyramidal chain, edge connected. The relation between the crystal structure and the Br NQR is discussed

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.