Abstract
Spectroscopic and crystallographic data are presented for salts containing the [V(OH(2))(6)](3+) cation, providing a rigorous test of the ability of the angular overlap model (AOM) to inter-relate the electronic and molecular structure of integer-spin complexes. High-field multifrequency EPR provides a very precise definition of the ground-state spin-Hamiltonian parameters, while single-crystal absorption measurements enable the energies of excited ligand-field states to be identified. The EPR study of vanadium(III) as an impurity in guanidinium gallium sulfate is particularly instructive, with fine-structure observed attributable to crystallographically distinct [V(OH(2))(6)](3+) cations, hyperfine coupling, and ferroelectric domains. The electronic structure of the complex depends strongly on the mode of coordination of the water molecules to the vanadium(III) cation, as revealed by single-crystal neutron and X-ray diffraction measurements, and is also sensitive to the isotopic abundance. It is shown that the AOM gives a very good account of the change in the electronic structure, as a function of geometric coordinates of the [V(OH(2))(6)](3+) cation. However, the ligand-field analysis is inconsistent with the profiles of electronic transitions between ligand-field terms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.