Abstract
The molecular structures of square-planar X42+, X4+, and X4 (X = S, Se, Te) have been calculated using the effective core potential model. For X42+ the agreement between experimental and calculated values is excellent provided that d orbitals are included in the basis set. For the hypothetical molecules X4+ and X4 the bond lengths are found to increase dramatically as one and, subsequently, two electrons are added to the systems. Extensive population analysis shows that this increase is almost exclusively due to loss of bonding in the π system, whereas the bonding in the σ system remains relatively unaltered. These results make it possible to predict covalent single bond radii for S, Se, and Te for which the influence of π repulsion is removed. From the calculated variation of bond lengths with atomic charge, bond lengths are predicted for a series of planar disulphide rings. Keywords: structure, bonding, chalcogen, theoretical, ECP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.