Abstract

Ab initio calculations in the framework of density functional theory (DFT) were performed to study the lowest-energy isomers of noble metal halide clusters M(n)Br(n) and M(n)I(n), for M = Cu, Ag, or Au and n = 1-6. For all species, the most stable structures were found to be cyclic arrangements. Calculated bond lengths and infrared frequencies were compared with the available experimental data. The nature of the ionocovalent bonding was characterized. The stability and fragmentation were also investigated. The present work confirms previous observations on the particular stability of the trimer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.