Abstract

The nature of the bonding in the above carbonyls was studied using the analysis of domain averaged Fermi holes (DAFH). The results straightforwardly confirm the conclusions of earlier theoretical studies in which the existence of direct metal-metal bond, anticipated for the above carbonyls on the basis of 18-electron rule, was questioned. In addition to indicating the lack of direct metal-metal bond, the DAFH analysis also allowed to characterize the nature of the electron pairs involved in the bonding of the bridging ligands. The analysis has shown that because the number of available electron pairs is not sufficient for the formation of ordinary localized 2c-2e bonds between terminal M(CO)(3) fragments and the bridging ligands, the bonding in both carbonyls exhibits typical features of electron deficiency and one bonding electron pair is effectively involved in multicenter 3c-2e bonding. Because of the symmetry of the complexes the bridging ligands are not distinguishable and all M-C-M bridges have a partial 3c-2e nature via resonance of the localized structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.