Abstract

The increasing popularity of graph data in various domains has lead to a renewed interest in developing efficient graph matching techniques, especially for processing large graphs. In this paper, we study the problem of approximate graph matching in a large attributed graph. Given a large attributed graph and a query graph, we compute a subgraph of the large graph that best matches the query graph. We propose a novel structure-aware and attribute-aware index to process approximate graph matching in a large attributed graph. We first construct an index on the similarity of the attributed graph, by partitioning the large search space into smaller subgraphs based on structure similarity and attribute similarity. Then, we construct a connectivity-based index to give a concise representation of inter-partition connections. We use the index to find a set of best matching paths. From these best matching paths, we compute the best matching answer graph using a greedy algorithm. Experimental results on real datasets demonstrate the efficiency of both index construction and query processing. We also show that our approach attains high-quality query answers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call