Abstract

Cryoelectron microscopy has been used to visualize the Escherichia coli transcription termination protein rho in a vitreously frozen state, without the use of stains, fixatives or other chemical perturbants. In the absence of RNA cofactor, a variety of structures are observed, reflecting the heterogeneity of complexes formed by rho at protein concentrations near the physiological range (3 to 10 μ m). One of the most common structural motifs we see is a six-membered ring of rho subunits (present as either a closed or “notched” circle), which corresponds to the predominant hexameric association state of the protein. Also visible are smaller oligomeric structures, present as curved lines of rho subunits, which probably represent the lower association states of the protein that coexist with the hexamer at these protein concentrations. Addition of oligomers of ribocytosine (rC) of defined lengths (23-mers and 100-mers) results in the generation of more homogenous populations of rho oligomers. In the presence of (rC) 23, all identifiable particles appear either as closed or as notched hexameric circles. A small fraction of these particles are of visibly higher density, and are identified with the dodecamers expected as a subpopulation of rho under these conditions. Binding of (rC) 100, an oligomer of length greater than that needed to span the entire hexamer binding site, results in a uniform population of closed circular hexamers. In some images additional features are visible at either the centers or the peripheries of the particles. These features may correspond to the excess length of the rC strands bound to the hexamers. The distributions of particles observed under the various experimental conditions used correlate well to those deduced from physical biochemical studies (Seifried et al., accompanying paper).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.