Abstract

A detailed understanding of protein-nanoparticle interactions is critical to realize the full potential of bioconjugate-enabled technologies. Parameters that lead to conformational changes in protein structure upon adsorption must be identified and controlled to mitigate loss of biological function. We hypothesized that the installation of thiol functional groups on a protein will facilitate robust adsorption to gold nanoparticles (AuNPs) and prevent protein unfolding to achieve thermodynamic stability. Here we investigated the adsorption behavior of α-chymotrypsin (ChT) and a thiolated analog of α-chymotrypsin (T-ChT) with AuNPs. ChT, which does not present any free thiols, was modified with 2-iminothiolane (Traut’s reagent) to synthesize T-ChT consisting of two free thiols. Protein adsorption to AuNPs was monitored with dynamic light scattering and UV–vis spectrophotometry, and fluorescence spectra were acquired to assess changes in protein structure induced by interaction with the AuNP. The biological function of ChT, T-ChT, and respective bioconjugates were compared using a colorimetric enzymatic assay. The thiolated analog exhibited a greater affinity for the AuNP than the unmodified ChT, as determined from adsorption isotherms. The ChT protein formed a soft protein corona in which the enzyme denatures with prolonged exposure to AuNPs and, subsequently, lost enzymatic function. Conversely, the T-ChT formed a robust hard corona on the AuNP and retained structure and function. These data support the hypothesis, provide further insight into protein-AuNP interactions, and identify a simple chemical approach to synthesize robust and functional conjugates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.