Abstract

Group II introns are found in eubacteria and eubacterial-derived, organellar genomes. They have ribozymic activities, by which they direct and catalyze the splicing of the exons flanking them. This chapter reviews the secondary structure and known tertiary interactions of the ribozymic component of group II introns in relation to the problems of specifying splice sites and building a catalytic core. We pay special attention to the relationship between the transesterification and hydrolytic modes of initiating splicing and the stereospecificities of these reactions. A number of group II introns encode proteins of the reverse transcriptase family; the activity of these proteins enables the host introns to change genomic locations by mechanisms that are only beginning to be deciphered. Finally, we briefly discuss multipartite and post-transcriptionally edited group II introns, together with the intron microcosm of Euglena gracilis chloroplasts and the possible relationships between group II and spliceosome-catalyzed splicing processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.