Abstract

A novel protein structure alignment technique has been developed reducing much of the secondary and tertiary structure to a sequential representation greatly accelerating many structural computations, including alignment. Constructed from incidence relations in the Delaunay tetrahedralization, alignments of the sequential representation describe structural similarities that cannot be expressed with rigid-body superposition and complement existing techniques minimizing root-mean-squared distance through superposition. Restricting to the largest substructure superimposable by a single rigid-body transformation determines an alignment suitable for root-mean-squared distance comparisons and visualization. Restricted alignments of a test set of histones and histone-like proteins determined superpositions nearly identical to those produced by the established structure alignment routines of DaliLite and ProSup. Alignment of three, increasingly complex proteins: ferredoxin, cytidine deaminase, and carbamoyl phosphate synthetase, to themselves, demonstrated previously identified regions of self-similarity. All-against-all similarity index comparisons performed on a test set of 45 class I and class II aminoacyl-tRNA synthetases closely reproduced the results of established distance matrix methods while requiring 1/16 the time. Principal component analysis of pairwise tetrahedral decomposition similarity of 2300 molecular dynamics snapshots of tryptophanyl-tRNA synthetase revealed discrete microstates within the trajectory consistent with experimental results. The method produces results with sufficient efficiency for large-scale multiple structure alignment and is well suited to genomic and evolutionary investigations where no geometric model of similarity is known a priori.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.