Abstract

Analogs of vasoactive intestinal peptide with cysteine residues incorporated at selected sites within the sequence were prepared by solid phase methods, oxidized to the corresponding cyclic disulfides and purified to homogeneity by preparative HPLC. The cyclic compounds were assayed as smooth muscle relaxants on isolated guinea pig trachea, as bronchodilators in vivo in guinea pigs, and for binding to VIP receptors in guinea pig lung membranes. Of the analogs prepared at the N-terminus, one compound, Ac-[D-Cys6,D-Cys11,Lys12,Nle17,Val26,Th r28]-VIP, was found to be a full agonist with slightly more than one tenth the potency of native VIP. Most other cyclic analogs in the N-terminal region were found to be inactive. A second analog, Ac-[Lys12,Cys17,Val26,Cys28]-VIP, was also found to be a full agonist with potency about one third that of native VIP. Furthermore, this compound was active as a bronchodilator in vivo in guinea pig, but with somewhat diminished potency as compared to native VIP. Strikingly, this cyclic compound was found to have significantly longer duration of action (> 40 min) when compared to an analogous acyclic compound (5 min). The conformational restrictions imposed by formation of the cyclic ring structures may have stabilized the molecule to degradation, thus enhancing the effective duration of action. Analysis of this series of cyclic analogs has also yielded information about the requirements for the receptor-active conformation of VIP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.