Abstract

Activation of Toll-like receptors has been linked to neuropathic pain and opioid dependence. (+)-Naltrexone acts as a Toll-like receptor 4 (TLR4) antagonist and has been shown to reverse neuropathic pain in rat studies. We designed and synthesized compounds based on (+)-naltrexone and (+)-noroxymorphone and evaluated their TLR4 antagonist activities by their effects on inhibiting lipopolysaccharide (LPS) induced TLR4 downstream nitric oxide (NO) production in microglia BV-2 cells. Alteration of the N-substituent in (+)-noroxymorphone gave us a potent TLR4 antagonist. The most promising analog, (+)-N-phenethylnoroxymorphone ((4S,4aR,7aS,12bR)-4a,9-dihydroxy-3-phenethyl-2,3,4,4a,5,6-hexahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7(7aH)-one, 1j) showed ∼75 times better TLR-4 antagonist activity than (+)-naltrexone, and the ratio of its cell viability IC50, a measure of its toxicity, to TLR-4 antagonist activity (140 μM/1.4 μM) was among the best of the new analogs. This compound (1j) was active in vivo; it significantly increased and prolonged morphine analgesia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.