Abstract

Density functional theory calculations have been used to investigate competition between inner- and outer-sphere reaction pathways in the oxidative coupling of CO2 and ethylene for a set of 12 Ni–bisphosphine complexes, in order to build a QSAR approach correlating catalyst structure to calculated energy barriers for CO2 activation. The ligands were selected to explore different substituents on the P atoms (cyclohexyl, phenyl, and tert-butyl) and different lengths of the tether connecting the P atoms, −(CH2)n– with n = 1–3. As expected, the conclusion is that the inner-sphere reaction pathway is favored with unhindered ligands, while the outer-sphere reaction pathway is favored with hindered ligands. To find a possible correlation with molecular descriptors, we started using the buried volume as a steric descriptor. A reasonable correlation could be found for the energy barrier along the inner-sphere pathway, while scarce correlation was found for the energy barrier along the outer-sphere pathway, indicat...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.