Abstract
Allelopathy and bioassays constitute fundamental tools in the search for new herbicide templates. The work described here is a continuation of a previous study focused on the structure-activity relationships between transport phenomena and phytotoxic activity. Different modifications were made to the naphthoquinone backbone and two key factors were identified as being responsible for changes in activity: lipophilicity and the nature of the functional group. The study of other naturally occurring and semi-synthetic naphthoquinones was also proposed. A total of 12 5-O-acyl plumbagins and 18 analogs with unsaturated and aromatic substituents at positions 2 and 5 were synthesized. These compounds were evaluated in the wheat coleoptile bioassay and against Standard Target Species (STS) and three weeds, namely Echinochloa crus-galli L., Lolium rigidum Gaud. and Lolium perenne L. A strong structure-function relationship was observed for the different naphthoquinones and root and shoot length were the parameters that were most affected. Strong inhibitory effects were observed for the isomeric forms 23 and 33 and the derivatives with a free hydroxyl group, i.e. 24 and 30, gave values higher than 70% inhibition for root length in barnyardgrass and perennial ryegrass. These results highlight the potential of these compounds as models in the development of herbicides based on natural products. © 2019 Society of Chemical Industry.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.