Abstract

We investigated the relationship between the structures of pyrrole-containing alkaloids from marine sponges of the genus Agelas and their capacity to deter feeding by the omnivorous Caribbean reef fish, Thalassoma bifasciatum. Seven natural products were assayed at volumetric concentrations of 1, 5, and 10 mg/ml: dispacamide A, keramadine, oroidin, midpacamide, 4,5-dibromopyrrole-2-carboxylic acid, 4,5-dibromopyrrole-2carboxamide, and racemic longamide A. We also assayed 14 structural analogs obtained mostly by chemical synthesis. Of the seven natural products, only rac-longamide A was not significantly deterrent at any of the assay concentrations. The pyrrole moiety was required for feeding inhibition activity, while the addition of the imidazole group enhanced this activity. Variously functionalized imidazoles lacking the pyrrole moiety were not deterrent. Combinations of the natural products appeared to have an additive effect on feeding inhibition; there was no evidence of synergy. Given their high concentrations in sponge tissue, dispacamide A and oroidin most probably serve as the primary chemical defenses of many Agelas sp., while minor compounds such as keramadine are not present in high enough concentrations to contribute much to chemical defense.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call