Abstract
We recently discovered JAL-TA9 (YKGSGFRMI), a short hydrolytic peptide that we termed a Catalytide. The catalytic center of JAL-TA9 was modeled using MM2 and MMFF94 parameters and identified as GSGFR. Additionally, a structure-activity relationship study showed that GSGYR cleaved Aβ11-29. Here, we developed a novel Catalytide in silico. Molecular dynamics simulations of GSGYR and RYGSG using MM2 and MMFF94 parameters suggested that both peptides may form catalytic triads and oxyanion holes. The hydrolytic potency of RYGSG was five times higher than that of GSGYR. Moreover, both peptides showed three common cleavage positions for Aβ11-29; namely, L17-V18, V18-F19, and E22-D23. The aggregation ratio analyzed by the thioflavin-T assay correlated well with proteolytic activity, suggesting that the aggregation of Aβ11-29 was suppressed by the cleavage reaction. Docking simulations with the carbonyl carbon of L17 or the carbonyl carbon of E22 in Aβ11-29 were conducted using the secondary structures of GSGYR and RYGSG. The distance between the hydroxyl group of serine and the carbonyl carbon of the two cleavage sites proved that RYGSG was closer to Aβ11-29 than to GSGYR. This study demonstrated that Catalytides are useful for understanding structure-activity relationships.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.