Abstract

Chalcones containing tertiary amine side-chains have potent activity as acetylcholinesterase (AChE) inhibitors. However, the effects of the location of the tertiary amine groups as well as of other groups on AChE and butyrylcholinesterase (BChE) activity have not been reported. Here, we report the synthesis and testing of 36 new coumarin-chalcone hybrids (5d-7j, 9d-11f, 12k-13m) against AChE and BChE. The nature and position of the chalcone substituents had major effects on inhibitory activity as well as selectivity for AChE over BChE. Compounds with para-substituted chalcone fragments in which the substituents were choline-like had potent activity against AChE and poor activity against BChE, while ortho-substituted analogs exhibited an opposite effect. Replacement of the terminal amine groups by amide, alkyl or alkenyl groups abrogated activity. Compound 5e showed potent inhibitory activity [Formula: see text]) and good selectivity for AChE over BChE (ratio 27.4), and a kinetic study showed that 5e exhibited mixed-type inhibition against AChE. Computational docking results indicate that 5e binds to Trp 279, Tyr334 and Trp 84 in AChE, but only to Trp 82 in BChE. Overall, the results show that coumarin-chalcone hybrids with choline-like side-chains have promising activity and selectivity against AChE and be promising therapeutic leads for Alzheimer's disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.