Abstract

trans-2-Phenylcycloproylamine (trans-PCPA) has been used as the scaffold to develop covalent-binding inhibitors against lysine-specific demethylase 1 (LSD1/KDM1A), a therapeutic target for several cancers. However, the effects of different structural moieties on the inhibitory activity, selectivity, and reactivity of these derivatives, including the cis isomers, against LSD1 and its paralogue LSD2/KDM1B are not fully understood. Here we synthesized 65 cis- and trans-PCPA derivatives and evaluated their inhibitory activity against LSD1 and LSD2. One of the derivatives, 7c (cis-4-Br-2,5-F2-PCPA; S1024), inhibited LSD1 and LSD2 with Ki values of 0.094 μM and 8.4 μM, respectively, and increased the level of dimethylated histone H3 at K4 in CCRF-CEM cells. A machine learning-based regression model (Q2 = 0.61) to predict LSD1-inhibitory activity was also constructed and showed a good prediction accuracy (R2 = 0.81) for 12 test-set compounds, including 7c. The present methodology would be useful when designing covalent-binding inhibitors for other enzymes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.