Abstract

Fluorophores with a minimal push-pull backbone are actively pursued due to their potentials in biological labelling. Herein a series of structurally-thrifty and visible-absorbing fluorophores (SDXs) were successfully constructed following the D'D-π-A design strategy, in which a secondary donor (D') was introduced in conjugation with the donor (D) to enhance its electron donating capability. For a very small scaffold, SDXs exhibit a surprisingly long-wavelength absorption band in the visible spectral range (λabs=420nm) and a strong green fluorescence emission (λem=530nm) with a fluorescence quantum yield up to 0.84. Notably, fluorescence of SDXs was quenched in hydrogen-bonding solvents, e.g. MeOH and H2O. This phenomenon renders SDXs feasibility for imaging of cellular non-hydrogen-bonding microenvironment, as demonstrated with BEAS-2B cells. These results proved that the D'D-π-A is a powerful design strategy to construct novel structurally-thrifty fluorophores.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.