Abstract

The major challenge of commercially available vascular substitutes come from their limitations in terms of good mechanical strength and host remodeling. To date, tissue-engineered and synthetic grafts have not translated well to clinical trials when looking at small diameters. We conceptualized a cell-free structurally reinforced biodegradable vascular graft recapitulating the anisotropic feature of native blood vessel by using nanofibrous scaffold that will gradually degrade systematically to yield a neo-vessel, facilitated by an immobilized bioactive molecule-vascular endothelial growth factor (VEGF). The nanotopographic cue of the device is capable to directs host cell infiltration. We evaluated the burst pressure, Histology, hemocompatibility, compression test and mechanical analysis of the new graft. Hence, we proposed that future long-term studies of this technology on porcine models due to their similar vasculature regeneration to humans is needed prior to clinical translation. This acellular off-the-shelf approach will mark a paradigm shift from the current dominant focus on cell incorporation in vascular tissue engineering thus strongly influencing regenerative medicine as we move forward in this new decade.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.