Abstract

Achieving ultraviolet and narrowband emission simultaneously in nondoped organic light-emitting diodes (OLEDs) remains a tremendous challenge. Here, a "space-crowded donor-acceptor-donor" molecular design strategy is proposed for developing ultraviolet pure organic fluorophores by the nearby substituted positions at the phenyl linker between carbazole and pyridine units. Benefitting from the large steric hindrance effect, multiple intramolecular interactions, and low-frequency vibronic coupling dominated excited state property, all the emitters exhibit excellent fluorescence efficiencies at the solid state as well as the narrow full width at half maximums (FWHMs). Moreover, the effect of different substitution positions of pyridine on the structure-property relationship is also revealed. Consequently, the nondoped OLEDs exhibit an electroluminescence emission peak of 397 nm with FWHMs of 17 and 22 nm. Due to the high-lying reverse intersystem crossing process, external quantum and exciton utilization efficiencies of 3.6 and 54.55%, respectively, have been achieved based on the emitter with para-linkage. These findings may pave an avenue for the development of high-performance narrowband ultraviolet materials and OLEDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.