Abstract

Solid-state polymer electrolytes are outstanding candidates for next-generation lithium metal batteries in the realm of high specific energy densities, high safeties and tight contact with electrodes. However, their applications are still hindered by the limitations that no single polymer is electrochemically stable with the oxidizing high-voltage cathode and the highly reductive Li anode, simultaneously. Herein, a bilayer asymmetric polymer electrolyte (SL-SPE) without accessional interface resistance that using poly (ethylene glycol) diacrylate (PEGDA) as a “bridge” to connect the sulfonyl (OS = O)-contained oxidation-tolerated layer and polyether-derived reduction-tolerated layer (SPE), is proposed and synthesized by sequential two-step UV polymerizations. SL-SPE can provide widened electrochemical stability window up to 5 V, while simultaneously deploying a stable Janus interface property. Eventually, the superior high-voltage (4.4 V) cycling durability can be displayed in LiNi0.6Co0.2Mn0.2O2|SL-SPE|Li batteries. This finding provides a bran-new idea for designing multifunctional polymer electrolytes in the application of solid-state batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.