Abstract

Two forms of lactoferrin, an intact lactoferrin and a "nicked" but apparently intact (i.e., 78-kDa) form, have been isolated from the urine of preterm infants fed human milk. These two forms of lactoferrin, demonstrated to be entirely of maternal origin, were copurified using affinity columns of immobilized single-stranded DNA-agarose. The relative concentrations of the intact lactoferrin and the "nicked" lactoferrin were determined after denaturation and separation by reverse-phase HPLC. N-terminal sequence analyses showed that the intact 78-kDa form had lost two residues from its N terminus. The nicked 78-kDa form was composed of only two fragments; one fragment was identified as the N terminus of the N-lobe (residues 3-283). The other fragment started with Ser-284 and included the alpha-helical structures at the C terminus of the N-lobe, as well as the entire C-lobe. Although no disulfide bonds connect these two fragments, they were tightly associated in vivo and were not separated in vitro except under denaturing conditions. Limited in vitro digestion of human milk lactoferrin with trypsin produced a nicked, but stable (78-kDa), form of DNA-binding lactoferrin nearly indistinguishable from the isolated urinary lactoferrin, except for the absence of one additional arginine residue at the N terminus of the N-lobe. Residues involved in the stable molecular interaction between fragments were evaluated using data obtained from the high-resolution crystal structure of hololactoferrin. Two features, entirely within the N-lobe, account for the lack of fragment dissociation after cleavage at residue 283 in vivo: an extensive interface at the hinge region behind the iron-binding cleft and an "anchor" sequence traversing the remainder of the N-lobe at 90 degrees relative to the fragment interface. These results document the remarkably limited degradation of absorbed lactoferrin in vivo and suggest that iron-binding activity, receptor-binding properties, and postulated immune cell regulatory functions remain intact.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.