Abstract

While it is becoming apparent that organic semiconductor/metal interfaces may exhibit a variety of different structural phases, it is at present unclear to what extent these different thin-film structures determine the interfacial electronic structure. Here, we observe large changes in the interfacial electronic structure for the case of copper(II) phthalocyanine (CuPc) on $\mathrm{Cu}(110)\ensuremath{-}(2\ifmmode\times\else\texttimes\fi{}1)\mathrm{O}$. This striking evolution of the interfacial electronic structure occurs beyond the first monolayer of CuPc and is particularly evident in the frontier orbital region. Using scanning tunneling microscopy in conjunction with photoemission spectroscopy, we characterize ultrathin films of CuPc grown on oxygen reconstructed Cu(110). We propose that the observed unique changes to the electronic structure result from an abrupt transition in film structure between the first and second layers: An interface layer of ordered, face-on molecules templates a largely vertical, edge-on orientation of molecules in the subsequent layer. The quadrupole moment of the molecule accounts for the sizable and unusual change in ionization energy between molecules in the two layers. Our results demonstrate that the precise structure of the organic semiconductor film exerts an important role in determining the interfacial electronic structure that must be considered and may be harnessed for tailoring energy level alignment at such interfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.