Abstract
Metal complexes bearing dichalcogenated imidodiphosphinate [R2P(E)NP(E)R2′]− ligands (E = O, S, Se, Te), which act as (E,E) chelates, exhibit a remarkable variety of three-dimensional structures. A series of such complexes, namely, square-planar [Cu{(OPPh2)(OPPh2)N-O, O}2], tetrahedral [Zn{(EPPh2)(EPPh2)N-E,E}2], E = O, S, and octahedral [Ga{(OPPh2)(OPPh2)N-O,O}3], were tested as potential inhibitors of either the platelet activating factor (PAF)- or thrombin-induced aggregation in both washed rabbit platelets and rabbit platelet rich plasma. For comparison, square-planar [Ni{(Ph2P)2N-S-CHMePh-P, P}X2], X = Cl, Br, the corresponding metal salts of all complexes and the (OPPh2)(OPPh2)NH ligand were also investigated. Ga(O,O)3 showed the highest anti-PAF activity but did not inhibit the thrombin-related pathway, whereas Zn(S,S)2, with also a significant PAF inhibitory effect, exhibited the highest thrombin-related inhibition. Zn(O,O)2 and Cu(O,O)2 inhibited moderately both PAF and thrombin, being more effective towards PAF. This work shows that the PAF-inhibitory action depends on the structure of the complexes studied, with the bulkier Ga(O,O)3 being the most efficient and selective inhibitor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.