Abstract

Abstract Structurally complex reservoirs form a distinct class of reservoir, in which fault arrays and fracture networks, in particular, exert an over-riding control on petroleum trapping and production behaviour. With modern exploration and production portfolios commonly held in geologically complex settings, there is an increasing technical challenge to find new prospects and to extract remaining hydrocarbons from these more structurally complex reservoirs. Improved analytical and modelling techniques will enhance our ability to locate connected hydrocarbon volumes and unswept sections of reservoir, and thus help optimize field development, production rates and ultimate recovery. This volume reviews our current understanding and ability to model the complex distribution and behaviour of fault and fracture networks, highlighting their fluid compartmentalizing effects and storage-transmissivity characteristics, and outlining approaches for predicting the dynamic fluid flow and geomechanical behaviour of structurally complex reservoirs. This introductory paper provides an overview of the research status on structurally complex reservoirs and aims to create a context for the collection of papers presented in this volume and, in doing so, an entry point for the reader into the subject. We have focused on the recent progress and outstanding issues in the areas of: (i) structural complexity and fault geometry; (ii) the detection and prediction of faults and fractures; (iii) the compartmentalizing effects of fault systems and complex siliciclastic reservoirs; and (iv) the critical controls that affect fractured reservoirs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.