Abstract
Noise reduction by structural geometry optimization has attracted much attention among designers. In the present work, we propose a free-form optimization method for the structural–acoustic design optimization of shell structures to reduce the noise of a targeted frequency or frequency range in an open or closed space. The objective of the design optimization is to minimize the average structural vibration-induced sound pressure at the evaluation points in the acoustic field under a volume constraint. For the shape design optimization, we carry out structural–acoustic coupling analysis and adjoint analysis to calculate the shape gradient functions. Then, we use the shape gradient functions in velocity analysis to update the shape of shell structures. We repeat this process until convergence is confirmed to obtain the optimum shape of the shell structures in a structural–acoustic coupling system. The numerical results for the considered examples showed that the proposed design optimization process can significantly reduce the noise in both open and closed spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.