Abstract

Water is known to play a controlling role in directing mineralization pathways and stabilizing metastable amorphous intermediates in hydrous carbonate mineral MCO3·nH2O systems, where M2+ is a divalent metal cation. Despite this recognition, the nature of the controls on crystallization is poorly understood, largely owing to the difficulty in characterizing the dynamically disordered structures of amorphous intermediates at the atomic scale. Here, we present a series of atomistic models, derived from ab initio molecular dynamics simulation, across a range of experimentally relevant cations (M = Ca, Mg, Sr) and hydration levels (0 ≤ n ≤ 2). Theoretical simulations of the dependence of the X-ray pair distribution function on the hydration level n show good agreement with available experimental data and thus provide further evidence for a lack of significant nanoscale structure in amorphous carbonates. Upon dehydration, the metal coordination number does not change significantly, but the relative extent of water dissociation increases, indicating that a thermodynamic driving force exists for water dissociation to accompany dehydration. Mg strongly favors monodentate conformation of carbonate ligands and shows a marked preference to exchange monodentate carbonate O for water O upon hydration, whereas Ca and Sr exchange mono- and bidentate carbonate ligands with comparable frequency. Water forms an extensive hydrogen bond network among both water and carbonate groups that exhibits frequent proton transfers for all three cations considered suggesting that proton mobility is likely predominantly due to water dissociation and proton transfer reactions rather than molecular water diffusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call