Abstract

The reactivity of aryl monocarboxylic acids (benzoic, 1- or 2-naphtoic, 4'-methylbiphenyl-4-carboxylic, and anthracene-9-carboxylic acids) as complexing agents for the ethoxide niobium(V) (Nb(OEt)5 precursor has been investigated. A total of eight coordination complexes were isolated with distinct niobium(V) nuclearities as well as carboxylate complexation states. The use of benzoic acid gives a tetranuclear core Nb4 (μ2 -O)4 (L)4 (OEt)8 ] (L=benzoate (1)) with four Nb-(μ2 -O)-Nb linkages in a square plane configuration. A similar tetramer, 7, was obtained with 2-naphtoic acid by using a 55 % humid atmosphere synthetic route. Two types of dinuclear brick were identified with one central Nb-(μ2 -O)-Nb linkage; they differ in their complexation state, with one bridging carboxylate ([Nb2 (μ2 -O)(μ2 -OEt)(L)(OEt)6 ], with L=1-naphtoate (3) or anthracene-9-carboxylate (5)) or two bridging carboxylate groups ([Nb2 (μ2 -O)(L)2 (OEt)6 ], with L=4'-methylbiphenyl-4-carboxylic (4) or anthracene-9-carboxylate (6)). An octanuclear moiety [Nb8 (μ2 -O)12 (L)8 (η1 -L)4-x (OEt)4+x ] (with L=2-naphtoate, x=0 or 2; 8) was obtained by using a solvothermal route in acetonitrile; it has a cubic configuration with niobium centers at each node, linked by 12 μ2 -O groups. The formation of the niobium oxo clusters was characterized by infrared and liquid 1 H NMR spectroscopy in order to analyze the esterification reaction, which induces the release of water molecules that further react through oxolation with niobium atoms, in different {Nb2 O}, {Nb4 O4 } and {Nb8 O12 } nuclearities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call