Abstract

A series of potassium aryloxides (KOAr) were isolated from the reaction of a potassium amide (KN(SiMe(3))(2)) and the desired substituted phenoxide (oMP, 2-methyl; oPP, 2-iso-propyl; oBP, 2-tert-butyl; DMP, 2,6-di-methyl; DIP, 2,6-di-iso-propyl; DBP, 2,6-di-tert-butyl) in tetrahydrofuran (THF) or pyridine (py) as the following: [([K(mu(4)-oMP)(THF)][K(mu(3)-oMP)])(5)]( infinity ) (1), [[K(6)(eta(6),mu(3)-oMP)(4)(eta(6),mu(4)-oMP)(2)(py)(4)].[K(6)(eta(6),mu(3)-oMP)(6)(eta(6)-py)(4)]]( infinity ) (2), [K(mu(3)-oPP)](4)(THF)(3) (3), [K(4)(eta(6),mu(3)-oPP)(2)(mu(3)-oPP)(2)(py)(3)]( infinity ) (4), [K(mu(3)-oBP)(THF)](6) (5), [K(6)(eta(6),mu(3)-oBP)(2)(mu(3)-oBP)(4)(py)(4)]( infinity ) (6), [K(3)(eta(6),mu(3)-DMP)(2)(mu-DMP)(THF)]( infinity ) (7), [[K(eta(6),mu-DMP)(py)](2)]( infinity ) (8), [K(eta(6),mu-DIP)]( infinity ) (9), [K(eta(6),mu-DBP)]( infinity ) (10). Further exploration of the aryl interactions led to the investigation of the diphenylethoxide (DPE) derivative which was isolated as [K(mu(3)-DPE)(THF)](4) (11) or [K(mu(3)-DPE)(py)](4).py(2) (12) depending on the solvent used. In general, the less sterically demanding ligands (oMP, oPP, oBP, and DMP) were solvated polymeric species; however, increasing the steric bulk (DIP and DBP) led to unsolvated polymers and not discrete molecules. For most of this novel family of compounds, the K atoms were pi-bound to the aryl rings of the neighboring phenoxide derivatives to fill their coordination sites. The synthesss and characterization of these compounds are described in detail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.