Abstract
Mn2+ complexes of 2,4-pyridyl-disubstituted bispidine ligands have emerged as more biocompatible alternatives to Gd3+-based MRI probes. They display relaxivities comparable to that of commercial contrast agents and high kinetic inertness, unprecedented for Mn2+ complexes. The chemical structure, in particular the substituents on the two macrocyclic nitrogens N3 and N7, are decisive for the conformation of the Mn2+ complexes, and this will in turn determine their thermodynamic, kinetic and relaxation properties. We describe the synthesis of four ligands with acetate substituents in positions N3, N7 or both. We evidence that the bispidine conformation is dependent on N3 substitution, with direct impact on the thermodynamic stability, kinetic inertness, hydration state and relaxivity of the Mn2+ complexes. These results unambiguously show that (i) solely a chair-chair conformation allows for favorable inertness and relaxivity, and (ii) in this family such chair-chair conformation is accessible only for ligands without N3-appended carboxylates.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.