Abstract

The formation of particles during ablation of copper (Cu) in distilled water by different pulse duration (5 ns, 200 ps and 30 fs), wavelength (1064 and 355 nm of 5 ns pulses), and energy is demonstrated. It is found that the initial particles of Cu rapidly oxidize to form cupric oxide (CuO) and cuprous oxide (Cu2O) particles. Pulse duration and wavelength play a crucial role during the process of formation, morphology change, and aging of particles. We demonstrate that ultra-short pulses allow obtaining particles with smaller sizes and narrower distribution. It is shown that the morphology of CuO/Cu2O particles in this case becomes more stable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.