Abstract

Comprehensively identifying the loci shaping trait variation has been challenging, in part because standard approaches often miss many types of genetic variants. Structural variants, especially transposable elements are likely to affect phenotypic variation but we need better methods in maize for detecting polymorphic structural variants and TEs using short-read sequencing data. Here, we used a whole genome alignment between two maize genotypes to identify polymorphic structural variants and then genotyped a large maize diversity panel for these variants using short-read sequencing data. We characterized variation of SVs within the panel and identified SV polymorphisms that are associated with life history traits and genotype-by-environment interactions. While most of the SVs associated with traits contained TEs, only one of the SV's boundaries clearly matched TE breakpoints indicative of a TE insertion, whereas the other polymorphisms were likely caused by deletions. All of the SVs associated with traits were in linkage disequilibrium with nearby single nucleotide polymorphisms (SNPs), suggesting that this method did not identify variants that would have been missed in a SNP association study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.