Abstract

Single nucleotide mutation rates have critical implications for human evolution and genetic diseases. Importantly, the rates vary substantially across the genome and the principles underlying such variations remain poorly understood. A recent model explained much of this variation by considering higher-order nucleotide interactions in the 7-mer sequence context around mutated nucleotides. This model's success implicates a connection between DNA shape and mutation rates. DNA shape, i.e. structural properties like helical twist and tilt, is known to capture interactions between nucleotides within a local context. Thus, we hypothesized that changes in DNA shape features at and around mutated positions can explain mutation rate variations in the human genome. Indeed, DNA shape-based models of mutation rates showed similar or improved performance over current nucleotide sequence-based models. These models accurately characterized mutation hotspots in the human genome and revealed the shape features whose interactions underlie mutation rate variations. DNA shape also impacts mutation rates within putative functional regions like transcription factor binding sites where we find a strong association between DNA shape and position-specific mutation rates. This work demonstrates the structural underpinnings of nucleotide mutations in the human genome and lays the groundwork for future models of genetic variations to incorporate DNA shape.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call