Abstract

Charge, orbital, and magnetic ordering of NdBaFe(2)O(5) and HoBaFe(2)O(5), the two end-members of the double-cell perovskite series RBaFe(2)O(5), have been characterized over the temperature range 2-450 K, using differential scanning calorimetry, neutron thermodiffractometry and high-resolution neutron powder diffraction. Upon cooling, both compounds transform from a class-III mixed valence (MV) compound, where all iron atoms exist as equivalent MV Fe(2.5+) ions, through a "premonitory" charge ordering into a class-II MV compound, and finally to a class-I MV phase at low-temperature. The latter phase is characterized by Fe(2+)/Fe(3+) charge ordering as well as orbital ordering of the doubly occupied Fe(2+) d(xz) orbitals. The relative simplicity of the crystal and magnetic structure of the low-temperature charge-ordered state provide an unusual opportunity to fully characterize the classical Verwey transition, first observed in magnetite, Fe(3)O(4). Despite isotypism of the title compounds at high temperature, neutron diffraction analysis reveals striking differences in their phase transitions. In HoBaFe(2)O(5), the Verwey transition is accompanied by a reversal of the direct Fe-Fe magnetic coupling across the rare earth layer, from ferromagnetic in the class-II and -III MV phases to antiferromagnetic in the low-temperature class-I MV phase. In NdBaFe(2)O(5), the larger Nd(3+) ion increases the Fe-Fe distance, thereby weakening the Fe-Fe magnetic interaction. This decouples the charge and magnetic ordering so that the Fe-Fe interaction remains ferromagnetic to low temperature. Furthermore, the symmetry of the charge-ordered class-I MV phase is reduced from Pmma to P2(1)()ma and the magnitude of the orbital ordering is diminished. These changes destabilize the charge-ordered state and suppress the temperature at which the Verwey transition occurs. A comparison of the magnetic and structural features of RBaFe(2)O(5) compounds is included in order to illustrate how structural tuning, via changes in the radius of the rare-earth ion, can be used to alter the physical properties of these double-cell perovskites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.