Abstract

A new series of nanocomposite polymer electrolytes (NCPEs) was prepared using poly(vinylidene fluoride–co–hexafluoro propylene) P(VdF-HFP) as polymer, magnesium triflate (MgTr) as salt and nano-sized barium titanate (BaTiO3) (<100 nm) as nanofiller via traditional solution casting technique. Decrease in crystalline nature of the samples due to the incorporation of nano BaTiO3 was revealed through X-ray diffraction (XRD) analysis. From AC impedance spectroscopy, maximum conductivity of 4.11 × 10−4 Scm−1 was attained for the addition of 6 wt% of nano BaTiO3 to the P(VdF-HFP)/MgTr matrix. Dielectric studies were found to be in accordance with the ionic conductivity studies. For the most highly conducting sample, a greater number of mountain valley pattern was observed from Atomic Force Microscopy (AFM) analysis. Thermal stability of the sample, P(VdF-HFP)/MgTr/BaTiO3 (6 wt%) (which possessed maximum ionic conductivity) was observed through TG/differential thermal analysis studies. All these results suggested that these materials are favorable and find application in practical electrochemical devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.