Abstract
The overarching objective of this paper is to explore the implications of variation in ion concentration on the structural transitions driven by external forces in a torsionally constrained DNA molecule. A comprehensive understanding of the phase behavior of torsionally constrained DNA is useful because DNA in cells is tightly packaged and is acted upon by molecular machines in different ionic environments. We examine the mechanics of the overstretching transition, characterized by a 70% jump in contour length, wherein a mixture of B- and S-DNA converts into a mixture of S- and P-DNA through a triple point in the phase diagram. Our results are corroborated by experimental data at every step and we make predictions that are experimentally verifiable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.