Abstract

We report a quantitative investigation of silicidation in Ti/amorphous-Si thin-films using Differential Scanning Calorimetry (DSC), thin-film X-ray diffraction and Cross-sectional Transmission Electron Microscopy (XTEM). Multilayered thin films were used to facilitate calorimetric observation of the heat released or absorbed at many reacting interfaces. It is shown that calorimetric analysis, combined with structural analysis using X-ray diffraction and XTEM, is effective in providing both kinetic and thermodynamic information about interdiffusion reactions in thin films. The present paper describes experimental results for multilayers with an atomic concentration ratio of 1 Ti to 2 Si and modulation periods ranging from 10 to 60 nm. A thin amorphous titanium suicide layer was found to exist between the as-deposited Ti and a-Si layers. Heating the multilayer film caused the amorphous Ti-silicide to grow over a broad temperature range by an exothermic reaction. An endothermic relaxation occurs during the late stage of amorphous suicide growth. Heating to temperatures over 800K causes C49-TiSi2 to form at the a-si1icide/a-Si interface. Temperatures at which all the above structural transitions occur vary with modulation period. Analysis of the DSC data indicates an activation energy of 3.1 eV for the formation of C49-TiSio, which is attributed to both the nucleation and the early growth of the suicide. The heat of formation for C49-TiSi2 from a reaction of a-silicide and a-Si was found to be -30±5KJ/mol. Nucleation appears to be the controlling step in C49-TiSi2 formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.