Abstract

Two series of models of liquid cesium at temperatures of 493 and 623 K and pressures lower than 18 GPa are constructed by means of molecular dynamics using the potential of the embedded atom model. The thermodynamic properties of the models, pair correlation functions, pair radial distribution functions, structure factors, coordination numbers, and distributions of the Voronoi polyhedra and Delaunay simplexes are analyzed. No indications of structural transitions in liquid cesium of the first-order phase transition type are observed near a pressure of 3.9 GPa. Divergences from the results of some X-ray diffraction studies could be due to incorrect determination of the coordination numbers via the standard method because of the strong asymmetry of the first peaks of the pair radial distribution functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.