Abstract
Results have been presented for a computer experiment on concurrent micro-, meso-, and macroscopic studies of the evolution of dislocation structure in a large (adjacent to one of the junctions) domain of a grain after its constant-rate macroplastic deformation to an extent that corresponds to the onset of the stage of developed plastic deformation. The type of dislocation-density and dislocation-charge distributions, as well as amounts and degrees of inhomogeneity in local plastic deformation, have been analyzed. The type of dislocation rearrangements at the junctions and fractures of high-angle grain boundaries has been established, which is responsible for the formation of the first dangling dislocation boundaries, which are mesodefects that trigger fragmentation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.